Skip to main content
Average ER Wait Time
Checking ER Wait Time
The feed could not be reached
Doctors Hospital of Augusta

What Are Vaccines?

A vaccine is a biologically active substance designed to protect children and adults from infections caused by bacteria and viruses. Vaccines are also called immunizations because they take advantage of our natural immune system’s ability to prevent infectious illness. To understand how vaccines work, we need to consider how our immune system protects us from infections.

The Immune System

Our bodies are armed with a variety of methods to protect against infectious microorganisms like bacteria and viruses. The most sophisticated of these methods involve activating specific immune system cells, some of which make proteins called antibodies. For the immune system to effectively respond to an infectious microorganism, the invader must carry some sort of identification that immune cells can recognize and respond to. These identifying markers are called antigens. Both bacteria and viruses carry their own antigens. In fact, different varieties, or strains, of the same microorganism possess their own unique antigen. Immune cells are able to recognize these highly specific antigens, appropriately identify their owners as threatening, and respond accordingly.

The immune system’s response actually consists of two parts. First, in the presence of a particular antigen, special immune cells, called lymphocytes, become active and take steps against the antigen and its owner, either by unleashing a direct assault on the invader or discharging antibodies to do the job. This usually works quite well, but the full response can take awhile, sometimes days to weeks, during which time we suffer the symptoms of the infectious illness. Symptoms can include discomforts like fever, sore throat, or rash. It’s only after the immune system gains the upper hand that we begin to recover.

The second, and equally important, part of the immune system response involves creating memory. Not all of the immune cells and antibodies initially stimulated are destined to destroy the invader. A portion of them are held back so they can fight another day. The purpose of these memory cells and antibodies are to attack promptly and overwhelmingly, and to destroy the invader if it were to attack again. In most cases, this memory capability is so efficient that when the same antigen reappears again in the future, we are completely unaware that we’ve been exposed. The term immunity is used to describe the situation in which an effective memory response has attacked the antigen of a particular microorganism.

Consider the example of chickenpox (varicella), a common viral infection. If you were born prior to the early 1990s, when the varicella vaccine was first introduced, you probably remember staying home from school for about a week with a fever and rash. You probably have also noticed that the same illness never reoccurred. This is true even though you’ve almost certainly been exposed to the virus many times since. Your immune system successfully remembers the chickenpox antigen from its initial encounter with the virus and reliably responds each time it is confronted with the identical antigen on the single strain of varicella that infects humans.

Now consider the flu. Why is it possible, even likely, to suffer from the flu winter after winter despite a healthy immune response every time? Well, unlike the varicella virus, different strains of influenza infect humans each season. Being immune to last year’s flu strain may protect you for the duration of the season, but it will be of little use when next year’s strains come around.

Ways to Fool the System

So, where do vaccines fit in? The concept behind vaccinations is to stimulate a memory response without producing an actual illness. If successful, a vaccinated individual can enjoy the benefits of immunity without having to suffer through the original illness. To accomplish this, a vaccine must contain at least one antigen from the bacteria or virus of interest. The antigen may take many forms:

  • A part of the toxin responsible for the ill effects of the infection, as in tetanus and diphtheria
  • Tiny components of killed bacteria, as in pertussis
  • Viral protein produced by biotechnology, as in hepatitis B
  • Killed viruses or parts of viruses, as in inactivated polio
  • Live viruses that have been rendered harmless by a process called attenuation, as in measles, mumps, rubella, or chickenpox

Once the vaccine enters the body, its antigen(s) begins to stimulate the development of immune cells and antibodies, which build up over the course of several weeks. Since the immune response produced by vaccines is not as robust as the immune response produced by an actual infectious microorganism, a single vaccine dose usually only provides limited protection. This is why almost all vaccines require multiple doses to insure that the recipient is sufficiently immune. For example, until recently, the vaccine for measles was only given one time in early childhood. When outbreaks of measles began to appear in previously vaccinated adolescents, it became clear that a second, or booster, dose was necessary. Now it is recommended that all children and adults without evidence of immunity (especially those born after 1956) be vaccinated.

It is important to point out that vaccine antigens are often combined with other components for a variety of reasons. To increase the magnitude of the immune response, particularly in young children whose immune systems have yet to mature, antigens are often chemically combined with so-called adjuvant substances such as aluminum salts. In addition, a vaccine may contain by-products from the medium in which it was produced, such as egg protein, as well as substances to preserve the effectiveness of the antigen and keep it sterile, such as antibiotics. An apparent allergy to a vaccine may actually result from these additives rather than the antigen itself.

Active Versus Passive Immunity

The discussion so far has focused on so-called active immunity, which occurs when a person is exposed to an actual infection or receives a vaccination instead. In either case, the immune system responds by activating its own supply of cells and creating its own antibodies. There is, however, an alternative way to become immune.

In passive immunity, a person can benefit from someone else’s immune response by receiving their pre-manufactured antibodies. This occurs naturally in the uterus. Prior to birth, babies receive their mother’s antibodies, which cross the placenta and protect the newborn from the hostile, germ-laden, environment they encounter in the outside world. Were it not for these antibodies, infants would have a difficult time surviving the many months it would take for them to actively build up their own immunity.

Passive immunity can also be created artificially by administering antibodies retrieved from individuals who have already acquired active immunity to a particular infection. Passive vaccines contain immunoglobulins, which is another term for antibodies. Passive immunity is most commonly used in individuals who have recently been exposed to a serious infection, or who are at high risk for such an exposure, and may not be fully protected. This is because the protection afforded by passive immunization is immediate, whereas active immunization takes weeks or even months to become fully protective.

An example of this could be an infant who has not yet received the active measles vaccine. The infant may be given the passive measles immunoglobulin in the event of a household exposure, such as an older sibling with a measles infection. While passive immunizations are useful in selected cases, only active immunizations are used routinely. This is because passive immunity lasts a few months at best, whereas the protective effects of active immunity, with proper booster doses, should last a lifetime. There is also the usual risks associated with any transfusion of blood products.

Vaccines to Prevent Other Diseases

All vaccines are designed to target infections. However, two commonly recommended vaccines have the added benefit of protecting against cancer. This is true because of the close association of certain viruses with the development of certain cancers. Hepatitis B is the first example of a vaccine (introduced in 1982) that also reduces the risk of cancer. Hepatitis B is a major cause of primary liver cancer, with others being alcoholic cirrhosis and hepatitis C. By essentially eliminating the risk of hepatitis B, the vaccine protects against its associated cancer, but has no affect on the risk of liver cancer associated with excessive alcohol consumption or hepatitis C.

A more recent example of an anticancer immunization is the human papillomavirus (HPV) vaccine, introduced in 2006. Since HPV is the leading cause of cervical cancer, immunized women should experience a lower risk of Pap smear abnormalities including pre-cancers (cervical dysplasia) and cancer. In males, different types of HPV can cause genital warts. Others types can cause cancers in the penis, anus, and back of the mouth and throat.

Based on a number of studies documenting the vaccine’s effectiveness, the US Centers for Disease Control and Prevention (CDC) currently recommends that all boys and girls aged 11-12 years receive the 3-dose vaccination. Females aged 13-26 years should still get vaccinated if they missed getting vaccinated at age 11-12 years. Males aged 13-21 years (up to age 26 in some cases) should still get the vaccine if it was missed at an earlier age.

Why Should Everyone Be Vaccinated?

Imagine for a moment a disease contracted every year by more than 50 million people worldwide. Thirty percent die of this disease and the majority of those that survive are left with disfiguring skin lesions (most prominently on the face), rendered totally blind, or both. Now imagine this same disease, which has been in existence for at least 3,000 years, being completely eliminated from the face of the earth in as few as 25 years. From over 50 million to not a single case anywhere! What medical advance could possibly be that powerful? The smallpox vaccine.

No medical intervention in the history of humanity has been more successful than immunizations, as measured by the sheer number of people who have benefited. While smallpox is the shining example of a totally successful vaccine, the success rates of other vaccines are equally impressive. Where vaccines are readily available and routinely administered, the rates of measles, mumps, rubella, polio, hepatitis B, and many other infections have plummeted. In 1952, for example, there were 21,000 cases of polio resulting in paralysis in the US. By 1980, there were zero, and health officials are on the brink of worldwide polio eradication.

Based on this tremendously successful track record, great efforts are made to ensure that every child is immunized against a constantly growing number of infections. Despite the majority of children getting vaccinated, some children in the United States are still not vaccinated. This level of compliance is apparently sufficient to keep extremely rare infections from returning. However, parental choice to not vaccinate children has probably contributed to recent localized epidemics of measles and pertussis infections (whooping cough).

To completely eradicate an infectious illness in a population, high levels of immunization rates are necessary. This is due to the concept of herd immunity. Say an inadequately immunized person with measles enters a new community. That case of measles will have no impact on that community if all of its members (the entire herd) are already immune to measles, ideally through appropriate and timely vaccination. However, if many members of community are insufficiently immunized against measles, it will likely spread rapidly with the introduction of this new case. It can also spread outside the community if an infected member travels elsewhere. The only way to prevent such a scenario is to make sure the entire community is immunized against measles.

Ironically, some reluctant parents argue against vaccinating their children precisely because the universal vaccination program has been so successful. They reason that these infections have become so rare, that they are no longer even worth the small risk of harmful effects. In essence, they are saying that their children need not contribute to herd immunity since so many other children already have. After all, the smallpox vaccine was discontinued in the US in 1972, five years before the infection was officially declared eradicated worldwide. Health professionals counter that as long as these infections continue to exist in the world, they can be easily reintroduced into a population that is not adequately protected and cause considerable devastation. Consider the latest (2014-2015) outbreak of the measles in the United States. Nearly all cases were linked to one person at an amusement park in California. It did not take long for over 120 cases to spread across the country.

All states require students to have updated immunizations before enrolling in public schools. However, many states also permit parents to send their children to public schools without being immunized by officially registering their objection.

Vaccines recommended universally for all children, adolescents, and/or adults in the US include:

In addition to the routinely recommended immunizations there are a number of other vaccines indicated for only select people at increased risk. These include:

How and When Are Vaccines Given?

Most vaccines are injected with a needle deep inside a muscle. In infants, the preferred site for injections is in the thigh a little off the side because it is the largest muscle suitable for this purpose. In older children and adults the preferred site is the deltoid muscle in the upper arm because any lingering pain will not interfere with walking. The buttocks area is not ideal because it contains a lot of fat, and it risks damaging the sciatic nerve, which runs nearby.

Some vaccines are administered just beneath the skin; orally; or inhaled through the nose.

The optimal timing of vaccines is based on two, sometimes competing, factors. When a recipient is first capable of responding to the antigen and when they first need the protection. If a vaccine is given too early, a child will not be able to mount an adequate immune response and will not become adequately protected. This is true, for example, with the live viral vaccines (measles, mumps, and rubella), which should not generally be given prior to a child’s first birthday or a child has a poorly developed immune system. Most infants are at risk for infection from most of these preventable diseases, so most vaccines are begun early. HPV vaccine is an example where the vaccine is not given until the child is old enough to be at risk for the infection. However, if a vaccine is given too late a child may contract the infection.

One exception is hepatitis B which is given at birth even though the risk of infection from sexual activity or IV drug use may not occur until later in life.

Another consideration involves the need for booster doses. Most vaccines do not stimulate an adequate immune response after the first dose and must be repeated with booster doses at optimal intervals to insure adequate protection for a lifetime. This increases considerably the number of doses a child must receive before they are fully immunized. Fortunately, multiple vaccines can be administered simultaneously without compromising safety and effectiveness. This is particularly important now that children routinely receive 14 different immunizations by the time they reach the age of 7 years.

With the rapid growth in the number of recommended vaccines, the schedule has become quite complicated. Here is a timetable of all routine vaccines in children up through the age of 6 years.

Recommended Vaccine Schedule: Aged 0-6 Years (2015)
Indicates age range to administer dose(s)
Vaccine Birth 1 Month 2 Months 4 Months 6 Months 9 Months 12 Months 15 Months 18 Months 19-23 Months 2-3 Years 4-6 Years
Hepatitis B HepB HepB HepB      
Rotavirus     RV RV RV            
Diptheria, tetanus, pertussis (DTaP)     DTaP DTaP DTaP     DTaP     DTaP
Haemophilus influenza type b (Hib)     Hib Hib Hib   Hib        
Pneumococcal (PCV)     PCV PCV PCV   PCV        
Inactivated poliovirus (IPV)     IPV IPV IPV     IPV
Influenza         Influenza (yearly)1
Measles, mumps, rubella (MMR)             MMR       MMR
Varicella             Varicella       Varicella
Hepatitis A             HepA Series    

Source: Centers for Disease Control and Prevention. Available at

1 Second dose needed for children aged 6 months to 8 years who are getting the vaccine for the first time (at least 4 weeks must pass between first and second dose)

Recommended Vaccine Schedule: Aged 7-18 Years (2015)
Indicates age range to administer dose(s)
Indicates vaccines only recommended for certain high risk groups
Catch-up immunizations
Vaccine 7-10 years 11-12 years 13-18 years
Diptheria, tetanus, pertussis Tdap Tdap Tdap
Human papillomavirus   HPV (3 doses) HPV series
Meningococcal (Meningococcal conjugate vaccine is recommended for certain children at increased risk from ages 2 months-10 years) MCV4 MCV4 MCV4 Booster at age 16
Influenza Influenza (yearly)
Pneumococcal Pneumococcal
Hepatitis A Hep A series
Hepatitis B Hep B series
Inactivated poliovirus IPV series
Measles, mumps, rubella MMR series
Varicella Varicella series

Source: Centers for Disease Control and Prevention. Available at

Children who fall off the recommended schedule and those in certain high-risk groups may receive these and other vaccines on a modified schedule. Parents and caregivers of children who have missed doses on the recommended schedule should discuss with their child's pediatrician an alternate vaccination schedule. There are catch-up schedules for children who miss doses. You can find the catch up schedule on the CDC website.

There is also a vaccination schedule for adults age 19 years and older. This can also be found at the CDC website.

How Safe Are Vaccines?

Vaccines are one of the safest and most effective medical interventions ever devised. Consider measles. The risk of a life-threatening reaction to the measles-mumps-rubella (MMR) vaccine is approximately 1-2 per 1,000,000 doses given. Conversely, the risk of death from measles itself is 1-3 per 1,000 cases, which means that a child who contracts measles is approximately 500 times more likely to die from the infection than a child who is immunized against it (children receive two MMR vaccines). All routinely administered vaccines have a similar mortality rate measured in cases per million.

The fact that vaccines are rarely life threatening does not, of course, mean they are completely safe. Vaccines are associated with a variety of adverse effects ranging from mild discomfort at the injection site to serious neurologic complications. The vast majority of unwanted reactions are mild and temporary. These include localized pain, redness and swelling, as well as low-grade fever and rash. The benefits of the routine vaccinations far outweigh the risks of these mild, self-limited and unavoidable reactions.

However, since routine vaccines are given to perfectly healthy individuals who only have a small risk of future infection, any potential for significant, long-term harm must be taken extremely seriously. As the potential for adverse reactions increase, at some point the risk of harming a healthy child in the present no longer outweigh the benefits of protecting him or her in the future. Despite repeated assurances from numerous government agencies and independent research scientists that routine vaccinations meet the highest standards of safety and effectiveness, a small yet vocal group of parents and consumer advocacy organizations remain unconvinced. They have raised concerns about connections between various vaccines and a variety of serious health conditions including autism, multiple sclerosis, sudden infant death syndrome (SIDS), and cancer. One reason this controversy persists is that it can be difficult to prove a causal connection between vaccines, which are given often, and most of these conditions, which occur rarely. Even if a child develops, say, autistic behavior soon after receiving a vaccine, it does not mean the vaccine was responsible. Autism naturally appears around the same age as when the vaccine is recommended. To date, there is substantial evidence that the two events are not connected to one another.

Nevertheless, serious adverse reactions do rarely take place, and it is essential to monitor these events carefully. The National Childhood Vaccine Injury Act of 1986 requires healthcare providers who administer vaccines to maintain permanent immunization records and to report serious adverse reactions to the Vaccine Adverse Event Reporting System (VAERS). Consistent reporting by physicians nationwide provides clues to unanticipated adverse reactions from all vaccines, but particularly the newer ones for which there is relatively limited experience. In addition, VAERS can monitor the frequency of known reactions, identify possible risk factors for these reactions, and help locate a bad vaccine batch. If you are concerned your child may have developed a serious reaction to a recently administered vaccine, contact your child’s pediatrician. In addition, you may report your concerns directly to VAERS, where patient-identifying information is kept confidential.

In the event of serious injury or death thought to be caused by a vaccination, patients and their families can be compensated through the National Vaccine Injury Compensation Program, a no fault system covering most of the vaccines given routinely to children and adults.

Precautions and Contraindications

Contraindications refer to situations in which a vaccine or vaccines should not be administered to an individual under any circumstances because the risks clearly outweigh the benefits. Precautions refer to a situation where the vaccine may be safely given, but the benefits and risks must be carefully weighed before proceeding. Contraindications and precautions may be temporary or permanent, and they may apply to all vaccines or only certain ones. A severe, life-threatening allergic reaction to a particular vaccine is a contraindication to its further use, although, the same individual may receive other vaccines safely.

As a rule of thumb, precautions should be observed if a recipient has ever had a serious, but non-life-threatening reaction from which they completely recovered. Examples of these include high fever, seizure, or persistent inconsolable crying. Future precautions are, of course, unnecessary in situations where the recipient experienced minor, transient reactions that are not unexpected. Furthermore, if a recipient arrives for a vaccine with acute moderate or severe illness, it is usually best to wait until the illness resolves before administering the vaccine. However, precautions are generally unnecessary for minor illnesses; vaccines can generally be administered safely even in the presence of a low-grade fever.

Special considerations are necessary for people with compromised immune systems. The safety and effectiveness of immunizations will depend on the severity and cause of the immunodeficiency. These may include HIV infection, congenital conditions, or after transplantation, and the type of vaccine being considered. Vaccines containing live viruses, for example, may actually cause the infectious illness in them, and even perfectly safe vaccines may not produce a sufficiently protective immune response. In some cases, the household contacts of immunocompromised patients should not receive live vaccines since the virus can be spread on rare occasions. In addition to immunodeficiencies, other illness, or medications to treat them, can impair vaccine safety and effectiveness. For example, children receiving corticosteroids, which at high doses can have profound effects on the immune system, may require special precautions. The same may be true for children with a history of seizures.

Many children have their immunization unnecessarily delayed or even forgone due to common misconceptions among both physicians and parents regarding when vaccines are contraindicated. Routinely administered vaccines are generally not contraindicated under the following common circumstances:

  • Mild acute illness with or without low-grade fever in an otherwise well child
  • A child in the recovery phase of illness
  • Current use of antibiotics
  • Recent exposure to an infectious illness
  • Reaction to a previous vaccine dose involving only localized soreness, redness, or swelling
  • Infants born prematurely
  • Breastfeeding mother
  • History of nonspecific allergies or relatives with allergies
  • History of allergies to penicillin or any other antimicrobial agent, except anaphylactic reactions to neomycin or streptomycin
  • Family history of seizures, sudden infant death syndrome, or adverse events after immunization
  • Centers for Disease Control and Prevention

    Vaccines & Immunizations

  • Family Doctor—American Academy of Family Physicians

  • Caring for Kids—Canadian Paediatric Society

  • Public Health Agency of Canada

  • 2015 Recommended immunizations for children from birth through 6 years old. Centers for Disease Control and Prevention website. Available at: Updated January 26, 2015. Accessed February 17, 2015.

  • 2015 Recommended immunizations for children from 7 through 18 years old. Centers for Disease Control and Prevention website. Available at: Updated January 26, 2015. Accessed February 17, 2015.

  • About the VAERS program. Vaccine Adverse Event Reporting System website. Available at: Accessed February 17, 2015.

  • Bosch FX, Tsu V, et al. Reframing cervical cancer prevention. Expanding the field towards prevention of human papillomavirus infections and related diseases.Vaccine. 2012;30 Suppl 5:F1-F11.

  • Carrillo-Marquez M, White L. Current controversies in childhood vaccination.S D Med. 2013;Spec no:46-51.

  • Centers for Disease Control and Prevention. National, state, and local area vaccination coverage among children aged 19-35 months—United States, 2011.MMWR. 2012;61:689-696.

  • Chang MH. Hepatitis B virus and cancer prevention. Recent Results Cancer Res. 2011;188:75-84.

  • Childhood vaccines: What they are and why your child needs them. American Academy of Family Physicians Family Doctor website. Available at: Updated December 2010. Accessed February 17, 2015.

  • Giraldi G, De Luca d'Alessandro E. The HPV infection in males: An update.Ann Ig. 2012;24(6):497-506.

  • Human papillomavirus vaccine. EBSCO DynaMed website. Available at: Updated February 16, 2015. Accessed February 17, 2015.

  • Immunizations in children and adolescents. EBSCO DynaMed website. Available at: Updated January 19, 2015. Accessed February 17, 2015.

  • Immune system. National Institute of Allergy and Infectious Disease website. Available at: Updated December 30, 2013. Accessed February 17, 2015.

  • Immunity types. Centers for Disease Control and Prevention website. Available at: Updated May 19, 2014. Accessed February 17, 2015.

  • STD facts-HPV and men. Centers for Disease Control and Prevention website. Available at: Updated December 22, 2014. Accessed February 17, 2015.

  • Vaccines. National Institute of Allergy and Infectious Disease website. Available at: Updated August 18, 2008. Accessed February 17, 2015.